Why is the osmotic second virial coefficient related to protein crystallization?

نویسندگان

  • B. L. Neal
  • D. Asthagiri
  • E. W. Kaler
چکیده

A molecular basis is presented for characterizing the osmotic second virial coefficient, B 22 , of dilute protein solutions, which provides a measure of the nature of protein—protein interactions and has been shown to be correlated with crystallization behavior. Experimental measurements of the second virial coefficient of lysozyme and bovine a-chymotrypsinogen A were performed by static light scattering, as a function of pH and electrolyte concentration. Although some of the trends can be explained qualitatively by simple colloidal models of protein interactions, a more realistic interpretation based on protein crystallographic structures suggests a different explanation of experimental trends. The interactions accounted for are solute—solute excluded volume (steric), electrostatic and short-range (mainly van der Waals) interactions. The interactions depend strongly on orientation, and this profoundly affects calculated second virial coefficients. We find that molecular configurations in which complementary surfaces are apposed contribute disproportionately to the second virial coefficient, mainly through short-range interactions; electrostatic interactions play a secondary role in many of these configurations. Thus molecular recognition events can play a role in determining the solution thermodynamic properties of proteins, and this provides a plausible basis for explaining the observed relationship with crystallization behavior. ( 1999 Elsevier Science B.V. All rights reserved. PACS: 41.20.Cv; 81.10.Dn; 87.15.Da; 87.15.Kg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictive crystallization of ribonuclease A via rapid screening of osmotic second virial coefficients.

Important progress has been made in recent years toward developing a molecular-level understanding of protein phase behavior in terms of the osmotic second virial coefficient, a thermodynamic parameter that characterizes pairwise protein interactions. Yet there has been little practical application of this knowledge to the field of protein crystallization, largely because of the difficult and t...

متن کامل

Ab initio study of the second virial coefficient protein — protein on the basis of intermolecular potential energy surface

Intermolecular potential energy surface (IPS) for protein — protein has been examined using RHF, DFT-B3LYPand MP2 levels of theory with 6-31G, 6-31G* basis sets. A number of basis sets were used in order to evaluatethe basis set effects, at all three levels of theory, basis sets has significant effects on the calculated potentialenergy curves (including position, depth and width of the potentia...

متن کامل

Crystallization conditions of membrane protein CLC-ec1: An example outside the crystallization slot

Many soluble proteins crystallize in conditions where their second virial coefficient takes on slightly negative values, known as the crystallization slot, allowing the possibility to screen for crystallizability by measuring virial coefficients. Here we measure virial coefficients for the membrane protein CLC-ec1, which has been crystallized. These virial coefficients reveal that CLC-ec1 cryst...

متن کامل

Selecting Temperature for Protein Crystallization Screens Using the Temperature Dependence of the Second Virial Coefficient

Protein crystals usually grow at a preferable temperature which is however not known for a new protein. This paper reports a new approach for determination of favorable crystallization temperature, which can be adopted to facilitate the crystallization screening process. By taking advantage of the correlation between the temperature dependence of the second virial coefficient (B(22)) and the so...

متن کامل

Nonmonotonic variation with salt concentration of the second virial coefficient in protein solutions.

The osmotic virial coefficient B2 of globular protein solutions is calculated as a function of added salt concentration at fixed pH by computer simulations of the "primitive model." The salt and counterions as well as a discrete charge pattern on the protein surface are explicitly incorporated. For parameters roughly corresponding to lysozyme, we find that B2 first decreases with added salt con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998